24 research outputs found

    Integrated quantized electronics: a semiconductor quantized voltage source

    Full text link
    The Josephson effect in superconductors links a quantized output voltage Vout = f \cdot(h/2e) to the natural constants of the electron's charge e, Planck's constant h, and to an excitation frequency f with important applications in electrical quantum metrology. Also semiconductors are routinely applied in electrical quantum metrology making use of the quantum Hall effect. However, despite their broad range of further applications e.g. in integrated circuits, quantized voltage generation by a semiconductor device has never been obtained. Here we report a semiconductor quantized voltage source generating quantized voltages Vout = f\cdot(h/e). It is based on an integrated quantized circuit of a single electron pump operated at pumping frequency f and a quantum Hall device monolithically integrated in series. The output voltages of several \muV are expected to be scalable by orders of magnitude using present technology. The device might open a new route towards the closure of the quantum metrological triangle. Furthermore it represents a universal electrical quantum reference allowing to generate quantized values of the three most relevant electrical units of voltage, current, and resistance based on fundamental constants using a single device.Comment: 15 pages, 3 figure

    Optical Microscopy in the Nano-World

    Get PDF
    Scanning near-field optical microscopy (SNOM) is an optical microscopy whose resolution is not bound to the diffraction limit. It provides chemical information based upon spectral, polarization and/or fluorescence contrast images. Details as small as 20 nm can be recognized. Photophysical and photochemical effects can be studied with SNOM on a similar scale. This article reviews a good deal of the experimental and theoretical work on SNOM in Switzerland

    Quantum metrology: foundation of units and measurements

    No full text
    The International System of Units (SI) is the world's most widely used system of measurement, used every day in commerce and science, and is the modern form of the metric system. It currently comprises the meter (m), the kilogram (kg), the second (s), the ampere (A), the kelvin (K), the candela (cd) and the mole (mol)). The system is changing though, units and unit definitions are modified through international agreements as the technology of measurement progresses, and as the precision of measurements improves. The SI is now being redefined based on constants of nature and their realization by quantum standards. Therefore, the underlying physics and technologies will receive increasing interest, and not only in the metrology community but in all fields of science. This book introduces and explains the applications of modern physics concepts to metrology, the science and the applications of measurements. A special focus is made on the use of quantum standards for the realization of the forthcoming new SI (the international system of units). The basic physical phenomena are introduced on a level which provides comprehensive information for the experienced reader but also provides a guide for a more intense study of these phenomena for students
    corecore